Code: 20CS5502

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2023

SOFTWARE ENGINEERING (MINORS in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	CO	Max.		
					Marks		
	UNIT-I						
1	a)	Explain the waterfall model of the software development process in detail.	L2	CO 1	7 M		
	b)	Illustrate SCRUM process flow with neat diagram.	L3	CO 2	7 M		
OR							
2	a)	Explain the nature of software. Analyze					
		the key challenges facing by software	L2	CO 1	7 M		
		engineering.					
	b)	Discuss an overview of unified process model with neat diagram.	L2	CO 2	7 M		
UNIT-II							
3	a)	Discuss about the steps required to					
		establish the groundwork for an	L2	CO 2	7 M		
		understanding of requirements.					

	1-)	Evaluit the process of provinces						
	b)	Explain the process of requirements	L2	CO 4	7 M			
		gathering in software development.						
OR								
4	a)	Define Requirements Elicitation. Explain						
		various activities performed in	L2	CO 4	7 M			
		requirements elicitation phase in brief.						
	b)	Describe various approaches of	L2	CO 2	7 M			
		requirement modeling in brief.			/ 1/1			
UNIT-III								
5	a)	What is a design model? Examine the						
		characteristics of a well-formed design	L2	CO 1	7 M			
		model.						
	b)	Describe about various architectural styles	L2	CO 2	7 M			
		in detail.	122		/ 1/1			
		OR						
6	a)	Illustrate how design model can be viewed	L3	CO 4	7 M			
		in different dimensions with neat sketch.	LS	CO 4	/ 1 V1			
	b)	What is software architecture? Explain the						
		architectural designs for web apps and	L2	CO 1	7 M			
		mobile apps.						
		UNIT-IV						
7	a)	Discuss about various methods of System	L2	CO 1	7 M			
		Testing or Higher order Testing.			/ 1 V1			
	b)	What is white box testing? Illustrate how						
		basis path testing can be done with	L3	CO 4	7 M			
		examples.						
	OR							

8	a)	Describe the test strategies for conventional Software in detail.	L2	CO 2	7 M				
	b)	What is validation? Analyze the							
		components involved in validation testing	L4	CO 4	7 M				
		with appropriate example.							
	UNIT-V								
9	a)	Define the role of risk management in							
	<i>a)</i>	software development process and	1.2	CO 3	7 M				
		describe about the risk strategies in detail.			, 111				
	b)	Discuss about elements of Software	L2	CO 3	7 M				
		Quality Assurance in brief.			,				
	OR								
10	a)	Analyze how risk projection can be done	L4	CO 3	7 M				
		in detail.			, 141				
	b)	What are the software quality goals and							
		discuss the corresponding metrics of	L2	CO 3	7 M				
		software quality.							